$A n^{(1)}$-Geometric Crystal corresponding to Dynkin index $i=2$ and its ultra-discretizationReportar como inadecuado



 $A n^{(1)}$-Geometric Crystal corresponding to Dynkin index $i=2$ and its ultra-discretization


$A n^{(1)}$-Geometric Crystal corresponding to Dynkin index $i=2$ and its ultra-discretization - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: $A n^{(1)}$-Geometric Crystal corresponding to Dynkin index $i=2$ and its ultra-discretization
Let $g$ be an affine Lie algebra with index set $I = \{0, 1, 2,

., n\}$ and $g^L$ be its Langlands dual. It is conjectured that for each $i \in I \setminus \{0\}$ the affine Lie algebra $g$ has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of certain coherent family of perfect crystals for $g^L$. We pro

Autor: Kailash C. Misra; Toshiki Nakashima

Fuente: https://archive.org/







Documentos relacionados