The thin film equation with backwards second order diffusion - Mathematics > Analysis of PDEsReportar como inadecuado




The thin film equation with backwards second order diffusion - Mathematics > Analysis of PDEs - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: In this paper, we focus on the thin film equation with lower order-backwards- diffusion which can describe, for example, the evolution of thinviscous films in the presence of gravity and thermo-capillary effects, or thethin film equation with a -porous media cutoff- of van der Waals forces. Wetreat in detail the equation $$u t + \{u^nu {xxx} + u u^{m-n}u x -A u^{M-n}u x\} x=0,$$ where $ u=\pm 1,$ $n>0,$ $M>m,$ and $A \ge 0.$ Global existenceof weak nonnegative solutions is proven when $ m-n> -2$ and $A>0$ or $ u=-1,$and when $-2< m-n<2,$ $A=0,$ $ u=1.$ From the weak solutions, we get strongentropy solutions under the additional constraint that $m-n> -{3}-{2}$ if$ u=1.$ A local energy estimate is obtained when $2 \le n<3 $ under someadditional restrictions. Finite speed of propagation is proven when $m>n-2,$for the case of -strong slippage,- $0


Autor: Amy Novick-Cohen, Andrey Shishkov

Fuente: https://arxiv.org/







Documentos relacionados