Roughness and multiscaling of planar crack fronts - Condensed Matter > Statistical MechanicsReportar como inadecuado




Roughness and multiscaling of planar crack fronts - Condensed Matter > Statistical Mechanics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: We consider numerically the roughness of a planar crack front within thelong-range elastic string model, with a tunable disorder correlation length$\xi$. The problem is shown to have two important length scales, $\xi$ and theLarkin length $L c$. Multiscaling of the crack front is observed for scalesbelow $\xi$, provided that the disorder is strong enough. The asymptoticscaling with a roughness exponent $\zeta \approx 0.39$ is recovered for scaleslarger than both $\xi$ and $L c$. If $L c > \xi$, these regimes are separatedby a third regime characterized by the Larkin exponent $\zeta L \approx 0.5$.We discuss the experimental implications of our results.



Autor: Lasse Laurson, Stefano Zapperi

Fuente: https://arxiv.org/







Documentos relacionados