Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytesReportar como inadecuado




Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Published in: Nanoscale (ISSN: 2040-3364), vol. 7, num. 26, p. 11420-11432 Cambridge: Royal Society of Chemistry, 2015

Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long life-span in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a similar to 2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/ membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.

Reference EPFL-ARTICLE-212366doi:10.1039/c5nr01355kView record in Web of Science





Autor: Atukorale, Prabhani U.; Yang, Yu-Sang; Bekdemir, Ahmet; Carney, Randy P.; Silva, Paulo J.; Watson, Nicki; Stellacci, Francesco; Ir

Fuente: https://infoscience.epfl.ch/record/212366?ln=en







Documentos relacionados