Electrical transport in bundled single-wall carbon nanotubes under high pressureReportar como inadecuado




Electrical transport in bundled single-wall carbon nanotubes under high pressure - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.ORCID iD: 0000-0002-4254-5020Volkova, Y. Zelenovskiy, P. Mases, Mattias Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.Babushkin, A. Soldatov, Alexander Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.Show others and affiliations 2013 (English)Conference paper, Poster (Refereed)

Abstract [en] : According to recent experimental data single wall carbon nanotubes (SWCNT) exhibit a sequence of phase transitions and demonstrate a high structural stability up to 35 GPa of non-hydrostatic pressure beyond which an irreversible transformation occurs. Here we report a study of electrical transport in SWCNTs at pressures up to 45 GPa in the temperature range of 300 - 400K. High pressure was generated in diamond anvil cell. The anvils are made of electrically conducting carbonado-type synthetic diamond. In the pressure range 10-25 GPa the CNT electrical resistance decreases considerably, whereas above 25 GPa it remains essentially unchanged. Such behaviour of the resistance can be connected to a structural modification of the SWCNTs accompanied by change of the conductivity character at high pressure. Raman spectra of the samples recovered after 30 GPa exhibit a large increase of D/G band intensity ratio. The Radial Breathing Mode part of the spectra remains essentially unaltered which testifies for structural integrity of the nanotubes after exposure to high non-hydrostatic pressure and lack of covalent interlinking between the tubes. Pressure dependences of resistance, activation energy for conductivity and charge carriers mobility were determined and discussed.

Place, publisher, year, edition, pages: 2013.

National Category : Other Physics Topics

Research subject: Experimental physics

Identifiers: URN: urn:nbn:se:ltu:diva-34856Local ID: 9293cfca-b36a-41ee-8178-9e4bf23863a1OAI: oai:DiVA.org:ltu-34856DiVA: diva2:1008107

Conference: EEIGM International Conference on Advanced materials research : 21/03/2013 - 22/03/2013

Note: Godkänd; 2013; 20130926 (andbra)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-01-19Bibliographically approved



Autor: Noël, Maxime

Fuente: http://ltu.diva-portal.org/







Documentos relacionados