Classification of generalized Hadamard matrices H6,3 and quaternary Hermitian self-dual codes of length 18 - Mathematics > CombinatoricsReportar como inadecuado




Classification of generalized Hadamard matrices H6,3 and quaternary Hermitian self-dual codes of length 18 - Mathematics > Combinatorics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: All generalized Hadamard matrices of order 18 over a group of order 3,H6,3, are enumerated in two different ways: once, as class regular symmetric6,3-nets, or symmetric transversal designs on 54 points and 54 blocks with agroup of order 3 acting semi-regularly on points and blocks, and secondly, ascollections of full weight vectors in quaternary Hermitian self-dual codes oflength 18. The second enumeration is based on the classification of Hermitianself-dual 18,9 codes over GF4, completed in this paper. It is shown that upto monomial equivalence, there are 85 generalized Hadamard matrices H6,3, and245 inequivalent Hermitian self-dual codes of length 18 over GF4.



Autor: Masaaki Harada, Clement Lam, Akihiro Munemasa, Vladimir D. Tonchev

Fuente: https://arxiv.org/







Documentos relacionados