Nonlinear effects in buoyancy-driven variable-density turbulenceReportar como inadecuado

Nonlinear effects in buoyancy-driven variable-density turbulence

Nonlinear effects in buoyancy-driven variable-density turbulence - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Publication Date: 2017-01-01

Journal Title: Journal of Fluid Mechanics

Publisher: Cambridge University Press

Volume: 810

Pages: 362-377

Language: English

Type: Article

This Version: AM

Metadata: Show full item record

Citation: Rao, P., Caulfield, C. P., & Gibbon, J. (2017). Nonlinear effects in buoyancy-driven variable-density turbulence. Journal of Fluid Mechanics, 810 362-377.

Abstract: We consider the time dependence of a hierarchy of scaled L²ᵐ-norms D_m,ω and D_m,θ of the vorticity ω =∇ x u and the density gradient ∇θ, where θ = log.(ρ*/ ρ*₀), in a buoyancy-driven turbulent flow as simulated by Livescu & Ristorcelli (J. Fluid Mech., vol. 591, 2007, pp. 43–71). Here, ρ* (x,t) is the composition density of a mixture of two incompressible miscible fluids with fluid densities ρ*₂ > ρ*₁, and ρ*₀ is a reference normalization density. Using data from the publicly available Johns Hopkins turbulence database, we present evidence that the L²-spatial average of the density gradient can reach extremely large values at intermediate times, even in flows with low Atwood number At = (ρ*₂ - ρ*₁)/(ρ*₂ + ρ*₁) = 0.05, implying that very strong mixing of the density field at small scales can arise in buoyancy-driven turbulence. This large growth raises the possibility that the density gradient ∇θ might blow up in a finite time.

Keywords: buoyancy-driven instability, mathematical foundations, Navier–Stokes equations

Sponsorship: We acknowledge, with thanks, the staff of IPAM UCLA where this collaboration began in the Autumn of 2014 on the programme ‘Mathematics of Turbulence’. We would also like to thank C. Doering and D. Livescu for useful discussions. All of the numerical data used are from the JHTDB (Livescu et al. 2014), a publicly available DNS database. For more information, please see We also thank the referees for suggesting substantial improvements.


External DOI:

This record's URL:



Autor: Rao, P Caulfield, Colm-cille PatrickGibbon, JD



Documentos relacionados