Improving PPM with dynamic parameter updatesReportar como inadecuado


Improving PPM with dynamic parameter updates


Improving PPM with dynamic parameter updates - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Publication Date: 2015-03-25

Journal Title: Proceedings of the Data Compression Conference 2015

Pages: 193-202

Language: English

Type: Article

Metadata: Show full item record

Citation: Steinruecken, C., Ghahramani, Z., & MacKay, D. (2015). Improving PPM with dynamic parameter updates. Proceedings of the Data Compression Conference 2015, 193-202.

Description: This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1109/DCC.2015.77.

Abstract: This article makes several improvements to the classic PPM algorithm, resulting in a new algorithm with superior compression effectiveness on human text. The key differences of our algorithm to classic PPM are that (A) rather than the original escape mechanism, we use a generalised blending method with explicit hyper-parameters that control the way symbol counts are combined to form predictions; (B) different hyper-parameters are used for classes of different contexts; and (C) these hyper-parameters are updated dynamically using gradient information. The resulting algorithm (PPM-DP) compresses human text better than all currently published variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly slower than classic PPM.

Identifiers:

This record's URL: http://www.repository.cam.ac.uk/handle/1810/247180http://dx.doi.org/10.1109/DCC.2015.77





Autor: Steinruecken, ChristianGhahramani, ZoubinMacKay, David

Fuente: https://www.repository.cam.ac.uk/handle/1810/247180



DESCARGAR PDF




Documentos relacionados