Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisationReportar como inadecuado


Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation


Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Publication Date: 2017-05-24

Journal Title: Journal of Chemical Technology and Biotechnology

Publisher: Wiley

Language: English

Type: Article

This Version: VoR

Metadata: Show full item record

Citation: Plaza, D., Strobel, V., Heer, P. K., Sellars, A., Hoong, S., Clark, A., & Lapkin, A. A. (2017). Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation. Journal of Chemical Technology and Biotechnology https://doi.org/10.1002/jctb.5292

Abstract: BACKGROUND: Development of circular economy requires significant advances in the technologies for valorisation of waste, as waste becomes new feedstock. Food waste is a particularly important feedstock, containing large variation of complex chemical functionality. Although most food waste sources are complex mixtures, waste from food processing, no longer suitable for the human food chain, may also represent relatively clean materials. One such material requiring valorisation is cocoa butter. RESULTS: Epoxidation of a triglyceride from a food waste source, processing waste cocoa butter, into the corresponding triglyceride epoxide was carried out using a modified Ishii-Venturello catalyst in batch and continuous flow reactors. The batch reactor achieved higher yields due to the significant decomposition of hydrogen peroxide in the laminar flow tubular reactor. Integral and differential models describing the reaction and the phase transfer kinetics were developed for the epoxidation of cocoa butter and the model parameters were estimated. Ring-opening of the epoxidised cocoa butter was undertaken to provide polyols of varying molecular weight (M$_\text{w}$ = 2000-84 000 Da), hydroxyl value (27-60 mg KOH g$^{-1}$) and acid value (1-173 mg KOH g$^{-1}$), using either aqueous ortho-phosphoric acid (H$_3$PO$_4$) or boron trifluoride diethyl etherate (BF$_3$·OEt$_2$)-mediated oligomerisation in bulk, using hexane or tetrahydrofuran (THF) as solvents. The thermal and tensile properties of the polyurethanes obtained from the reaction of these polyols with 4,4'-methylene diphenyl diisocyanate (MDI) are described. CONCLUSION: The paper presents a complete valorisation scheme for a food manufacturing industry waste stream, starting from the initial chemical transformation, developing a process model for the design of a scaled-up process, and leading to synthesis of the final product, in this case a polymer. This work describes aspects of optimisation of the conversion route, focusing on clean synthesis and also demonstrates the interdisciplinary nature of the development projects, requiring input from different areas of chemistry, process modelling and process design.

Keywords: cocoa butter, epoxidation, flow chemistry, food waste, phase-transfer catalysis, polyurethane, renewable feedstocks, ring-opening, polymerisation

Sponsorship: DP is grateful to the University of Warwick for funding PhD scholarship. This work was in part funded by EPSRC project ‘Terpene-based manufacturing for sustainable chemical feedstocks’ EP/K014889.

Identifiers:

External DOI: https://doi.org/10.1002/jctb.5292

This record's URL: https://www.repository.cam.ac.uk/handle/1810/265157



Rights: Attribution 4.0 International

Licence URL: http://creativecommons.org/licenses/by/4.0/





Autor: Plaza, DDStrobel, VHeer, Parminder KaurSellars, ABHoong, SSClark, AJ Lapkin, Alexei Alexandrovich

Fuente: https://www.repository.cam.ac.uk/handle/1810/265157



DESCARGAR PDF




Documentos relacionados