Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome proteinReportar como inadecuado




Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Publication Date: 2009-05-19

Language: English

Type: Article

Metadata: Show full item record

Citation: Ng, C. L., Waterman, D. G., Koonin, E. V., Walters, A. D., Chong, J. P. J., Isupov, M. N., Lebedev, A. A., et al. (2009). Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein.

Description: RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.

Abstract: Abstract Background Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. Results We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. Conclusion It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.

Identifiers: http://dx.doi.org/10.1186/1472-6807-9-32

This record's URL: http://www.dspace.cam.ac.uk/handle/1810/237918

Rights:

Rights Holder: Ng et al.; licensee BioMed Central Ltd.





Autor: Ng, C. LeongWaterman, David G.Koonin, Eugene V.Walters, Alison D.Chong, James P. J.Isupov, Michail N.Lebedev, Andrey A.Bunka, Davi

Fuente: https://www.repository.cam.ac.uk/handle/1810/237918



DESCARGAR PDF




Documentos relacionados