Vol 9: Genome-Wide DNA Polymorphisms in Seven Rice Cultivars of Temperate and Tropical Japonica Groups.Reportar como inadecuado



 Vol 9: Genome-Wide DNA Polymorphisms in Seven Rice Cultivars of Temperate and Tropical Japonica Groups.


Vol 9: Genome-Wide DNA Polymorphisms in Seven Rice Cultivars of Temperate and Tropical Japonica Groups. - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Vol 9: Genome-Wide DNA Polymorphisms in Seven Rice Cultivars of Temperate and Tropical Japonica Groups.
This article is from PLoS ONE, volume 9.AbstractElucidation of the rice genome is expected to broaden our understanding of genes related to the agronomic characteristics and the genetic relationship among cultivars. In this study, we conducted whole-genome sequencings of 6 cultivars, including 5 temperate japonica cultivars and 1 tropical japonica cultivar (Moroberekan), by using next-generation sequencing (NGS) with Nipponbare genome as a reference. The temperate japonica cultivars contained 2 sake brewing (Yamadanishiki and Gohyakumangoku), 1 landrace (Kameji), and 2 modern cultivars (Koshihikari and Norin 8). Almost >83% of the whole genome sequences of the Nipponbare genome could be covered by sequenced short-reads of each cultivar, including Omachi, which has previously been reported to be a temperate japonica cultivar. Numerous single nucleotide polymorphisms (SNPs), insertions, and deletions were detected among the various cultivars and the Nipponbare genomes. Comparison of SNPs detected in each cultivar suggested that Moroberekan had 5-fold more SNPs than the temperate japonica cultivars. Success of the 2 approaches to improve the efficacy of sequence data by using NGS revealed that sequencing depth was directly related to sequencing coverage of coding DNA sequences: in excess of 30× genome sequencing was required to cover approximately 80% of the genes in the rice genome. Further, the contigs prepared using the assembly of unmapped reads could increase the value of NGS short-reads and, consequently, cover previously unavailable sequences. These approaches facilitated the identification of new genes in coding DNA sequences and the increase of mapping efficiency in different regions. The DNA polymorphism information between the 7 cultivars and Nipponbare are available at NGRC Rices Build1.0 (http:-www.nodai-genome.org-oryza sativa en.html).



Autor: Arai-Kichise, Yuko; Shiwa, Yuh; Ebana, Kaworu; Shibata-Hatta, Mari; Yoshikawa, Hirofumi; Yano, Masahiro; Wakasa, Kyo

Fuente: https://archive.org/







Documentos relacionados