Function spaces not containing $ell {1}$Reportar como inadecuado



 Function spaces not containing $ell {1}$


Function spaces not containing $ell {1}$ - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Descargar gratis o leer online en formato PDF el libro: Function spaces not containing $ell {1}$
For $\Omega$ bounded and open subset of $\mathbb{R}^{d {0}}$ and $X$ a reflexive Banach space with 1-symmetric basis, the function space $JF {X}(\Omega)$ is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature that $JF {X}(\Omega)$ does not contain an isomorphic copy of $\ell {1}$. We also investigate the structure of these spaces and their duals.



Autor: S. A. Argyros; A. Manoussakis; M. Petrakis

Fuente: https://archive.org/







Documentos relacionados