Solving schrödinger equation by meshless methods Report as inadecuate




Solving schrödinger equation by meshless methods - Download this document for free, or read online. Document in PDF available to download.

M.A. Londoño ; J.D. Giraldo-Gómez ; R.L. Restrepo ; M.E. Mora-Ramos ; C.A. Duque ;Revista Mexicana de Física 2016, 62 (2)

Author: H. Montegranario

Source: http://www.redalyc.org/


Teaser



Revista Mexicana de Física ISSN: 0035-001X rmf@ciencias.unam.mx Sociedad Mexicana de Física A.C. México Montegranario, H.; Londoño, M.A.; Giraldo-Gómez, J.D.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A. Solving Schrödinger equation by meshless methods Revista Mexicana de Física, vol.
62, núm.
2, julio-diciembre, 2016, pp.
96-107 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http:--www.redalyc.org-articulo.oa?id=57048166006 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative EDUCATION Revista Mexicana de Fı́sica E 62 (2016) 96–107 JULY–DECEMBER 2016 Solving Schrödinger equation by meshless methods H.
Montegranarioa , M.A.
Londoñoa , J.D.
Giraldo-Gómeza , R.L.
Restrepob , M.E.
Mora-Ramosc , and C.A.
Duqued,∗ a Instituto de Matematicas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No.
52-21, Medellı́n, Colombia. b Universidad EIA, CP 055428, Envigado, Colombia. c Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av.
Universidad 1001, 62209 Cuernavaca, Morelos, Mexico. d Grupo de Materia Condensada-UdeA, Instituto de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No.
52-21, Medellı́n, Colombia. ∗ Phone: 57 4 219 56 30 e-mail: cduque@fisica.udea.edu.co Received 29 March 2016; accepted 29 April 2016 In this paper we apply a numerical meshless scheme for solving one and two dimensional time independent Schrödinger equation by means of collocation method with Radial Basis Functions interpolants.
In particular we approximate the solutions using multiquadrics.
The method is tested with some of the well-known configurations of Schrödinger equation and compa...





Related documents