About the calculation of the second-order susceptibility x2 tensorial elements for crystals using group theory Report as inadecuate




About the calculation of the second-order susceptibility x2 tensorial elements for crystals using group theory - Download this document for free, or read online. Document in PDF available to download.

J.J. Escobedo-Alatorre ; P.A. Márquez-Aguilar ; H. Hardhienata ; K. Hingerl ; A. Alejo-Molina ;Revista Mexicana de Física 2016, 62 (1)

Author: E.S. Jatirian-Foltides

Source: http://www.redalyc.org/


Teaser



Revista Mexicana de Física ISSN: 0035-001X rmf@ciencias.unam.mx Sociedad Mexicana de Física A.C. México Jatirian-Foltides, E.S.; Escobedo-Alatorre, J.J.; Márquez-Aguilar, P.A.; Hardhienata, H.; Hingerl, K.; Alejo-Molina, A. About the calculation of the second-order susceptibility X2 tensorial elements for crystals using group theory Revista Mexicana de Física, vol.
62, núm.
1, enero-julio, 2016, pp.
5-13 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http:--www.redalyc.org-articulo.oa?id=57048165002 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative EDUCATION Revista Mexicana de Fı́sica E 62 (2016) 5–13 JANUARY–JULY 2016 About the calculation of the second-order susceptibility χ(2) tensorial elements for crystals using group theory E.S.
Jatirian-Foltidesa , J.J.
Escobedo-Alatorrea , P.A.
Márquez-Aguilara , H.
Hardhienatab , K.
Hingerlc and A.
Alejo-Molinaa,c,∗ a Centro de Investigación en Ingenierı́a y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM Cuernavaca, Mor.
62209, México, ∗ Catedrático CONACYT. e-mail: adalberto.alejo@uaem.mx b Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jl.
Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia. c Center for Surface- and Nanoanalytics, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria. Received 12 June 2015; accepted 31 August 2015 In this work we discuss the way in which, in principle, the nonzero elements in the second-order susceptibility tensor are calculated in a crystal.
Group Theory predicts which one of these elements will be zero based on the symmetry of the crystal.
However, the position of these zeros in the tensor are intrinsic...





Related documents