# Finding Short Paths on Polytopes by the Shadow Vertex Algorithm

Finding Short Paths on Polytopes by the Shadow Vertex Algorithm - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: **
Finding Short Paths on Polytopes by the Shadow Vertex Algorithm**

We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope P = {x : Ax \leq b} along the edges of P, where A \in R^{m \times n} is a real-valued matrix. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1-delta that is a measure for the flatness of the vertices of P. For integer matrices A \in Z^{m \times n} we show a connection between delta and the largest absolute value Delta of any sub-determinant of A, yielding a bound of O(Delta^4 m n^4) for the length of the computed path. This bound is expressed in the same parameter Delta as the recent non-constructive bound of O(Delta^2 n^4 \log (n Delta)) by Bonifas et al. For the special case of totally unimodular matrices, the length of the computed path simplifies to O(m n^4), which significantly improves the previously best known constructive bound of O(m^{16} n^3 \log^3(mn)) by Dyer and Frieze.

Author: **Tobias Brunsch; Heiko Röglin**

Source: https://archive.org/