A bayesian framework with implementation error to improve the management of the red octopus (octopus maya) fishery off the yucatán peninsula Reportar como inadecuado




A bayesian framework with implementation error to improve the management of the red octopus (octopus maya) fishery off the yucatán peninsula - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Ciencias Marinas 2010, 36 (1)

Autor: J Jurado-Molina

Fuente: http://www.redalyc.org/


Introducción



Ciencias Marinas ISSN: 0185-3880 cmarinas@uabc.mx Universidad Autónoma de Baja California México Jurado-Molina, J A Bayesian framework with implementation error to improve the management of the red octopus (Octopus maya) fishery off the Yucatán Peninsula Ciencias Marinas, vol.
36, núm.
1, 2010, pp.
1-14 Universidad Autónoma de Baja California Ensenada, México Available in: http:--www.redalyc.org-articulo.oa?id=48013190002 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative Ciencias Marinas (2010), 36(1): 1–14 A Bayesian framework with implementation error to improve the management of the red octopus (Octopus maya) fishery off the Yucatán Peninsula C M Enfoque bayesiano con error de implementación para mejorar el manejo de la pesquería de pulpo rojo (Octopus maya) en la Península de Yucatán J Jurado-Molina Secretariat of the Pacific Community, 95 Promenade Roger Laroque, Anse Vata, New Caledonia. E-mail: jjurado@u.washington.edu ABSTRACT.
The red octopus (Octopus maya) is an endemic species of the Yucatán Peninsula and its fishery is one of the most important along the Atlantic coast of Mexico.
Commercial exploitation started in 1949.
Since 2002 an index of abundance has been estimated, and this index was used to perform a stock assessment and decision analysis using the Schaefer model.
A Bayesian approach was applied to estimate the model parameters and to project the species population under two management scenarios with a constant harvest rate and a positive implementation error.
Results suggest that in 1995 the biomass corresponded to 23% of the population carrying capacity (K) and that the current stock is only 14% of K.
The population may be depleted and a rebuilding plan might be necessary.
In the decision an...





Documentos relacionados