Optimization of turning operations by using a hybrid genetic algorithm with sequential quadratic programming Reportar como inadecuado




Optimization of turning operations by using a hybrid genetic algorithm with sequential quadratic programming - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

M. Assas ; I. Rezgui ;Journal of Applied Research and Technology 2013, 11 (1)

Autor: A. Belloufi

Fuente: http://www.redalyc.org/


Introducción



Journal of Applied Research and Technology ISSN: 1665-6423 jart@aleph.cinstrum.unam.mx Centro de Ciencias Aplicadas y Desarrollo Tecnológico México Belloufi, A.; Assas, M.; Rezgui, I. Optimization of Turning Operations by Using a Hybrid Genetic Algorithm with Sequential Quadratic Programming Journal of Applied Research and Technology, vol.
11, núm.
1, febrero, 2013, pp.
88-94 Centro de Ciencias Aplicadas y Desarrollo Tecnológico Distrito Federal, México Available in: http:--www.redalyc.org-articulo.oa?id=47426212007 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative   Optimization of Turning Operations by Using a Hybrid Genetic Algorithm with Sequential Quadratic Programming A.
Belloufi*1,3, M.
Assas2, I.
Rezgui3 1 Department of Mechanical Engineering, Université Mohamed Khider, 07000 Biskra, Biskra, Algeria *abelloufi@yahoo.fr 2 Laboratoire de Recherche en Productique (LRP), Department of Mechanical Engineering, University Hadj Lakhder, Batna Batna, Algeria 3 Université Kasdi Merbah Ouargla, Route de Ghardaia 30000, Ouargla Ouargla, Algeria ABSTRACT The determination of optimal cutting parameters is one of the most important elements in any process planning of metal parts.
In this paper, a new hybrid genetic algorithm by using sequential quadratic programming is used for the optimization of cutting conditions.
It is used for the resolution of a multipass turning optimization case by minimizing the production cost under a set of machining constraints.
The genetic algorithm (GA) is the main optimizer of this algorithm whereas SQP Is used to fine tune the results obtained from the GA.
Furthermore, the convergence characteristics and robustness of the proposed method have been explored through comparisons with results repor...





Documentos relacionados