Assessing measurement equivalence in ordered-categorical data Reportar como inadecuado




Assessing measurement equivalence in ordered-categorical data - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Psicológica 2012, 33 (2)

Autor: Paula Elosua 12843

Fuente: http://www.redalyc.org/


Introducción



Psicológica ISSN: 0211-2159 psicologica@uv.es Universitat de València España Elosua, Paula Assessing Measurement Equivalence in Ordered-Categorical Data Psicológica, vol.
33, núm.
2, 2012, pp.
403-421 Universitat de València Valencia, España Disponible en: http:--www.redalyc.org-articulo.oa?id=16923102013 Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Psicológica (2011), 32, 403-421. Assessing Measurement Equivalence in Ordered-Categorical Data Paula Elosua* University of the Basque Country Assessing measurement equivalence in the framework of the common factor linear models (CFL) is known as factorial invariance.
This methodology is used to evaluate the equivalence among the parameters of a measurement model among different groups.
However, when dichotomous, Likert, or ordered responses are used, one of the assumptions of the CFL is violated: the continuous nature of the observed variables.
The common factor analysis of ordered-categorical data (CFO) has been described in several works, but none evaluate its power and Type I error rate in the evaluation of measurement equivalence (ME).
In this simulation study, we evaluated ME under four different conditions: size of group (300, 500 and 1000), type of DIF (thresholds, loadings), amount of DIF (0.25, 0.40), and equality-impact of the distributions.
The parameters used for the data generation came from one scale with nine items with three ordered categories.
The results were evaluated according to three decision rules: a) the significance of the difference in chi-square values obtained in two nested models, b) the significance of the difference in chi-square values between two nested models with Bonferroni corrections, and c) the differen...





Documentos relacionados