Towards an efficient tile matrix inversion of symmetric positive definite matrices on multicore architecturesReportar como inadecuado




Towards an efficient tile matrix inversion of symmetric positive definite matrices on multicore architectures - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 HiePACS - High-End Parallel Algorithms for Challenging Numerical Simulations LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest 2 LaBRI - Laboratoire Bordelais de Recherche en Informatique 3 ICL - Innovative Computing Laboratory Knoxville 4 Department of Mathematical and Statistical Sciences

Abstract : The algorithms in the current sequential numerical linear algebra libraries e.g. LAPACK do not parallelize well on multicore architectures. A new family of algorithms, the tile algorithms, has recently been introduced. Previous research has shown that it is possible to write efficient and scalable tile algorithms for performing a Cholesky factorization, a pseudo LU factorization, a QR factorization, and computing the inverse of a symmetric positive denite matrix. In this extended abstract, we revisit the computation of the inverse of a symmetric positive denite matrix. We observe that, using a dynamic task scheduler, it is relatively painless to translate existing LAPACK code to obtain a ready-to-be-executed tile algorithm. However we demonstrate that, for some variants, non trivial compiler techniques array renaming, loop reversal and pipelining need then to be applied to further increase the parallelism of the application. We present preliminary experimental results.





Autor: Emmanuel Agullo - Henricus Bouwmeester - Jack Dongarra - Jakub Kurzak - Julien Langou - Lee Rosenberg -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados