Improved batch correction in untargeted MS-based metabolomicsReportar como inadecuado




Improved batch correction in untargeted MS-based metabolomics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Metabolomics

, 12:88

First Online: 18 March 2016Received: 02 November 2015Accepted: 18 February 2016DOI: 10.1007-s11306-016-1015-8

Cite this article as: Wehrens, R., Hageman, J.A., van Eeuwijk, F. et al. Metabolomics 2016 12: 88. doi:10.1007-s11306-016-1015-8

Abstract

IntroductionBatch effects in large untargeted metabolomics experiments are almost unavoidable, especially when sensitive detection techniques like mass spectrometry MS are employed. In order to obtain peak intensities that are comparable across all batches, corrections need to be performed. Since non-detects, i.e., signals with an intensity too low to be detected with certainty, are common in metabolomics studies, the batch correction methods need to take these into account.

ObjectivesThis paper aims to compare several batch correction methods, and investigates the effect of different strategies for handling non-detects.

MethodsBatch correction methods usually consist of regression models, possibly also accounting for trends within batches. To fit these models quality control samples QCs, injected at regular intervals, can be used. Also study samples can be used, provided that the injection order is properly randomized. Normalization methods, not using information on batch labels or injection order, can correct for batch effects as well. Introducing two easy-to-use quality criteria, we assess the merits of these batch correction strategies using three large LC–MS and GC–MS data sets of samples from Arabidopsis thaliana.

ResultsThe three data sets have very different characteristics, leading to clearly distinct behaviour of the batch correction strategies studied. Explicit inclusion of information on batch and injection order in general leads to very good corrections; when enough QCs are available, also general normalization approaches perform well. Several approaches are shown to be able to handle non-detects—replacing them with very small numbers such as zero seems the worst of the approaches considered.

ConclusionThe use of quality control samples for batch correction leads to good results when enough QCs are available. If an experiment is properly set up, batch correction using the study samples usually leads to a similar high-quality correction, but has the advantage that more metabolites are corrected. The strategy for handling non-detects is important: choosing small values like zero can lead to suboptimal batch corrections.

KeywordsBatch correction Untargeted metabolomics Non-detects Mass spectrometry Arabidopsis thaliana  Download fulltext PDF



Autor: Ron Wehrens - Jos. A. Hageman - Fred van Eeuwijk - Rik Kooke - Pádraic J. Flood - Erik Wijnker - Joost J. B. Keurentj

Fuente: https://link.springer.com/







Documentos relacionados