Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series Reportar como inadecuado




Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract

Hidden Markov Models HMMs and Hidden Semi-Markov Models HSMMs provide flexible, general-purpose models for univariate and multivariate time series. Although interest in HMMs and HSMMs has continuously increased during the past years, and numerous articles on theoretical and practical aspects have been published, several gaps remain. This thesis addresses some of them, divided into three main topics.

1. Computational issues in parameter estimation of stationary HMMs. The parameters of a HMM can be estimated by direct numerical maximization DNM of the log-likelihood function or, more popularly, using the Expectation-Maximization EM algorithm. We show how the EM algorithm could be modified to fit stationary HMMs. We propose a hybrid algorithm that is designed to combine the advantageous features of the EM and DNM algorithms, and compare the performance of the three algorithms EM, DNM and the hybrid. We then describe the results of an experiment to assess the true coverage probability of bootstrap-based confidence intervals for the parameters.

2. A Markov switching approach to model time-varying Beta risk of pan-European Industry portfolios. The motive to take up this topic was the development of a joint model for many financial time series. We study two Markov switching models in a Capital Asset Pricing Model framework, and compare their forecast performances to three models, namely a bivariate t-GARCH1,1 model, two Kalman filter based approaches and a bivariate stochastic volatility model.

3. Stylized facts of financial time series and HSMMs. The ability of a HMM to reproduce several stylized facts of daily return series was illustrated by Ryden et al. 1998. However, they point out that one stylized fact cannot be reproduced by a HMM, namely the slowly decaying autocorrelation function of squared returns. We present two HSMM-based approaches to model eighteen series of daily sector returns with about 5.000 observations. The key result is that, compared to a HMM, the slowly decaying autocorrelation function is significantly better described by a HSMM with negative binomial sojourn time and Normal conditional distributions.



Item Type: MPRA Paper -

Original Title: Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series-

Language: English-

Subjects: C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation ModelingC - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion ProcessesG - Financial Economics > G1 - General Financial Markets > G10 - GeneralC - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics-





Autor: Bulla, Jan

Fuente: https://mpra.ub.uni-muenchen.de/7675/







Documentos relacionados