Genetic Programming, Validation Sets, and Parsimony PressureReportar como inadecuado

Genetic Programming, Validation Sets, and Parsimony Pressure - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 TANC - Algorithmic number theory for cryptology LIX - Laboratoire d-informatique de l-École polytechnique Palaiseau, Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161 2 LVSN - Laboratoire de Vision et Systèmes Numériques 3 IIS - Information Systems Institute

Abstract : Fitness functions based on test cases are very common in Genetic Programming GP. This process can be assimilated to a learning task, with the inference of models from a limited number of samples. This paper is an investigation on two methods to improve generalization in GP-based learning: 1 the selection of the best-of-run individuals using a three data sets methodology, and 2 the application of parsimony pressure in order to reduce the complexity of the solutions. Results using GP in a binary classification setup show that while the accuracy on the test sets is preserved, with less variances compared to baseline results, the mean tree size obtained with the tested methods is significantly reduced.

Autor: Christian Gagné - Marc Schoenauer - Marc Parizeau - Marco Tomassini -



Documentos relacionados