Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice ClassificationReportar como inadecuado




Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

The Scientific World JournalVolume 2013 2013, Article ID 982438, 13 pages

Research Article

Information and Communications Technologies Department, Faculty of Computer Science, University of A Coruña, Campus Elviña s-n, 15071, A Coruña, Spain

Analytical Chemistry Department, Faculty of Sciences, University of A Coruña, Campus da Zapateira s-n, 15008, A Coruña, Spain

Received 24 September 2013; Accepted 21 October 2013

Academic Editors: Z. Cui and X. Yang

Copyright © 2013 C. Fernandez-Lozano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm GA, the most representative variables for a specific classification problem can be selected.





Autor: C. Fernandez-Lozano, C. Canto, M. Gestal, J. M. Andrade-Garda, J. R. Rabuñal, J. Dorado, and A. Pazos

Fuente: https://www.hindawi.com/



DESCARGAR PDF




Documentos relacionados