Indoor simulations reveal differences among plant species in capturing particulate matterReport as inadecuate




Indoor simulations reveal differences among plant species in capturing particulate matter - Download this document for free, or read online. Document in PDF available to download.

A number of studies have focused on the capacity of urban trees and shrubs to serve as efficient biological filters to mitigate air pollution. In this study, five different tree species were assessed for this function. Kerria japonica, Sophora japonica, Philadelphus pekinensis, Gleditsia sinensis, and Prunus persica -Atropurpurea- were tested in a deposition chamber using NH42SO4 particles. We quantified and compared the capability of all tested trees to remove particles by assessing deposition velocity, a measure of the ability to remove particles. When placed in the deposition chamber, S. japonica had the greatest deposition velocity, followed by Philadelphus pekinensis, G. sinensis, Prunus persica -Atropurpurea,- and K. japonica, in descending order. In addition, the comparison of deposition velocities among these species suggested that certain leaf geometries and surface characteristics of broadleaf trees, such as trichomes and grooves, increased particle capture. However, these results change under a different simulation condition using ambient air, suggesting that some trees actually increase pollutant number concentrations more than reduce particle concentration. This outcome can be explained by the aerodynamic effect of trees exceeding the filtering capacity of vegetation under some conditions. This highlights the difficulty of generalizing species selection criteria for practice use. Accordingly, our results indicate that using vegetation to reduce particle pollution and improve the air quality is not a universally advisable and viable solution.



Author: Jungang Chen, Xinxiao Yu, Huaxing Bi , Yanlin Fu

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents