Impact of Wolbachia on oxidative stress sensitivity in the parasitic wasp Asobara japonicaReportar como inadecuado

Impact of Wolbachia on oxidative stress sensitivity in the parasitic wasp Asobara japonica - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

The oxidative homeostasis is the balance between reactive oxygen species and antioxidant molecules. In addition to be considered as a key factor underlying life-history traits evolution, the oxidative homeostasis has been shown to be involved in many host–symbiont associations. Previous studies suggest an interaction between the bacterial endosymbiont Wolbachia and the oxidative homeostasis of some insect hosts. This interaction is likely to exert a strong influence on the host evolution, as it has been proposed in the wasp Asobara tabida, whose dependence upon Wolbachia is due to the evolutionary loss of its ability to regulate the oxidative homeostasis in the absence of the symbiont. Although such cases of complete dependence are rare, cases of insects having lost only a part of their autonomy over the control of the oxidative homeostasis might be more common. If so, one can expect that insects having coevolved with Wolbachia will be more sensitive to oxidative stress when cured of their symbionts. We tested this hypothesis by studying the effects of an experimentally-induced oxidative stress on various life-history traits of Asobara japonica, a species closely related to A. tabida. For most of the life-history traits studied, the sensitivity of the wasps to oxidative stress did not correlate with their infection status. The only exception was the parasitic success. However, contrarily to our expectation, the sensitivity to oxidative stress was increased, rather than decreased, when Wolbachia was present. This result suggests that Wolbachia does not participate to mitigate oxidative stress in A. japonica, and that on the contrary its presence might still be costly in stressful environments.

Autor: David Monnin , Natacha Kremer, Emmanuel Desouhant, Fabrice Vavre



Documentos relacionados