Atomistic Modeling of Gas Adsorption in NanocarbonsReport as inadecuate

Atomistic Modeling of Gas Adsorption in Nanocarbons - Download this document for free, or read online. Document in PDF available to download.

Journal of NanomaterialsVolume 2012 2012, Article ID 152489, 32 pages

Review ArticleDepartment of Fundamental and Applied Science for Engineering-Physics Section, University of Rome -La Sapienza-, via A. Scarpa 14-16, 00161 Rome, Italy

Received 11 July 2012; Revised 27 September 2012; Accepted 28 September 2012

Academic Editor: Jinquan Wei

Copyright © 2012 G. Zollo and F. Gala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Carbon nanostructures are currently under investigation as possible ideal media for gas storage and mesoporous materials for gas sensors. The recent scientific literature concerning gas adsorption in nanocarbons, however, is affected by a significant variation in the experimental data, mainly due to the different characteristics of the investigated samples arising from the variety of the synthesis techniques used and their reproducibility. Atomistic simulations have turned out to be sometimes crucial to study the properties of these systems in order to support the experiments, to indicate the physical limits inherent in the investigated structures, and to suggest possible new routes for application purposes. In consideration of the extent of the theme, we have chosen to treat in this paper the results obtained within some of the most popular atomistic theoretical frameworks without any purpose of completeness. A significant part of this paper is dedicated to the hydrogen adsorption on C-based nanostructures for its obvious importance and the exceptional efforts devoted to it by the scientific community.

Author: G. Zollo and F. Gala



Related documents