Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural ControlReportar como inadecuado




Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural Control - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Advances in Materials Science and Engineering - Volume 2016 2016, Article ID 5654619, 16 pages -

Research Article

Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China

Beijing Collaborative Innovation Center for Metropolitan Transportation, Beijing 100124, China

Received 14 April 2016; Revised 31 May 2016; Accepted 1 June 2016

Academic Editor: Juan J. Del Coz Díaz

Copyright © 2016 Haoxiang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In view of the disadvantages such as higher yield stress and inadequate adjustability, a combined low yield point steel plate damper involving low yield point steel plates and common steel plates is proposed. Three types of combined plate dampers with new hollow shapes are proposed, and the specific forms include interior hollow, boundary hollow, and ellipse hollow. The -maximum stiffness- and -full stress state- are used as the optimization objectives, and the topology optimization of different hollow forms by alternating optimization method is to obtain the optimal shape. Various combined steel plate dampers are calculated by finite element simulation, the results indicate that the initial stiffness of the boundary optimized damper and interior optimized damper is lager, the hysteresis curves are full, and there is no stress concentration. These two types of optimization models made in different materials rations are studied by numerical simulation, and the adjustability of yield stress of these combined dampers is verified. The nonlinear dynamic responses, seismic capacity, and damping effect of steel frame structures with different combined dampers are analyzed. The results show that the boundary optimized damper has better energy-dissipation capacity and is suitable for engineering application.





Autor: Haoxiang He, Xiaobing Wang, and Xiaofu Zhang

Fuente: https://www.hindawi.com/



DESCARGAR PDF




Documentos relacionados