A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk ProteinsReport as inadecuate

A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins - Download this document for free, or read online. Document in PDF available to download.


Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk ID. The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue.

Methods and Results

General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction EMF and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates Flotillin-2 FLOT2, Nexilin NEXN, Popeye-domain-containg-protein 2 POPDC2 and thioredoxin-related-transmembrane-protein 2 TMX2 and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes.


The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart.

Author: Siddarth Soni, Antonia J. A. Raaijmakers, Linsey M. Raaijmakers, J. Mirjam A. Damen, Leonie van Stuijvenberg, Marc A. Vos, Albert

Source: http://plos.srce.hr/


Related documents