Quorum Sensing Peptides Selectively Penetrate the Blood-Brain BarrierReport as inadecuate

Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier - Download this document for free, or read online. Document in PDF available to download.

Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx multiple time regression technique and efflux properties in an in vivo mouse model ICR-CD-1 to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain Kin = 20.87 μl-g×min, while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low Kin = 2.68 μl-g×min and very low Kin = 0.18 μl-g×min, respectively. All three quorum sensing peptides were metabolically stable in plasma in vitro during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

Author: Evelien Wynendaele, Frederick Verbeke, Sofie Stalmans, Bert Gevaert, Yorick Janssens, Christophe Van De Wiele, Kathelijne Pereman

Source: http://plos.srce.hr/


Related documents