Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural NetworksReport as inadecuate




Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks - Download this document for free, or read online. Document in PDF available to download.

Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.



Author: Junghwan Jin , Jinsoo Kim

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents