Possibilistic Networks: Parameters Learning from Imprecise Data and Evaluation strategyReportar como inadecuado




Possibilistic Networks: Parameters Learning from Imprecise Data and Evaluation strategy - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

* Corresponding author 1 LINA - Laboratoire d-Informatique de Nantes Atlantique 2 LARODEC - Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus

Abstract : There has been an ever-increasing interest in multidisciplinary research on representing and reasoning with imperfect data. Possibilistic networks present one of the powerful frameworks of interest for representing uncertain and imprecise information. This paper covers the problem of their parameters learning from imprecise datasets, i.e., containing multi-valued data. We propose in the rst part of this paper a possibilistic networks sampling process. In the second part, we propose a likelihood function which explores the link between random sets theory and possibility theory. This function is then deployed to parametrize possibilistic networks.





Autor: Maroua Haddad - Philippe Leray - Nahla Ben Amor -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados