A High-Throughput Gene Disruption Methodology for the Entomopathogenic Fungus Metarhizium robertsiiReportar como inadecuado




A High-Throughput Gene Disruption Methodology for the Entomopathogenic Fungus Metarhizium robertsii - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the -model- fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant ΔMrKu70 as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of M. robertsii.



Autor: Chuan Xu, Xing Zhang, Ying Qian, Xiaoxuan Chen, Ran Liu, Guohong Zeng, Hong Zhao, Weiguo Fang

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados