A Proteinaceous Fraction of Wheat Bran May Interfere in the Attachment of Enterotoxigenic E. Coli K88 F4 to Porcine Epithelial CellsReportar como inadecuado




A Proteinaceous Fraction of Wheat Bran May Interfere in the Attachment of Enterotoxigenic E. Coli K88 F4 to Porcine Epithelial Cells - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Wheat bran WB from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli ETEC K88 to intestinal porcine epithelial cells IPEC-J2 with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight MW multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry MS and mostly revealed the presence of various protease inhibitors PIs of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase-subtilisin inhibitor and alpha-amylase-trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis.



Autor: Gemma González-Ortiz , Sílvia Bronsoms, H. C. Quarles Van Ufford, S. Bart A. Halkes, Ritva Virkola, Rob M. J. Liskamp, Cees J.

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados