A Parallel Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector MachineReportar como inadecuado




A Parallel Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Machine - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Scientific Programming - Volume 2016 2016, Article ID 2739621, 10 pages -

Research ArticleCollege of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China

Received 27 October 2015; Revised 30 May 2016; Accepted 8 June 2016

Academic Editor: Tomàs Margalef

Copyright © 2016 Zhi Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The extensive applications of support vector machines SVMs require efficient method of constructing a SVM classifier with high classification ability. The performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can be efficiently obtained. In this paper, a coarse-grained parallel genetic algorithm CGPGA is used to simultaneously optimize the feature subset and parameters for SVM. The distributed topology and migration policy of CGPGA can help find optimal feature subset and parameters for SVM in significantly shorter time, so as to increase the quality of solution found. In addition, a new fitness function, which combines the classification accuracy obtained from bootstrap method, the number of chosen features, and the number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm GA based method and grid search method in terms of classification accuracy, number of chosen features, number of support vectors, and running time.





Autor: Zhi Chen, Tao Lin, Ningjiu Tang, and Xin Xia

Fuente: https://www.hindawi.com/



DESCARGAR PDF




Documentos relacionados