Neural Extrapolation of Motion for a Ball Rolling Down an Inclined PlaneReportar como inadecuado




Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position 4 different positions and slope 30°, 45° or 60°. In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available Experiment 1. However, even when participants punched an imaginary moving ball Experiment 2 or drew in air the imaginary trajectory Experiment 3, they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.



Autor: Barbara La Scaleia, Francesco Lacquaniti, Myrka Zago

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados