Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their GrowthReport as inadecuate

Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth - Download this document for free, or read online. Document in PDF available to download.

Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia CML, the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 GAS2 regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 GAS2DN to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate IM. GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced YFP+ progeny cells CD34+YFP+ were plated for colony-forming cell CFC assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% n = 3, while affected those of normal hematopoietic cells by 31±1% n = 2. Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.

Author: Haixia Zhou , Yue Ge , Lili Sun , Wenjuan Ma, Jie Wu, Xiuyan Zhang, Xiaohui Hu, Connie J. Eaves, Depei Wu , Yun Zhao



Related documents