Supervised feature learning via sparse coding for music information rerievalReportar como inadecuado


Supervised feature learning via sparse coding for music information rerieval


Supervised feature learning via sparse coding for music information rerieval - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

This thesis explores the ideas of feature learning and sparse coding for Music Information Retrieval MIR. Sparse coding is an algorithm which aims to learn new feature representations from data automatically. In contrast to previous work which uses sparse coding in an MIR context the concept of supervised sparse coding is also investigated, which makes use of the ground-truth labels explicitly during the learning process. Here sparse coding and supervised coding are applied to two MIR problems: classification of musical genre and recognition of the emotional content of music. A variation of Label Consistent K-SVD is used to add supervision during the dictionary learning process. In the case of Music Genre Recognition MGR an additional discriminative term is added to encourage tracks from the same genre to have similar sparse codes. For Music Emotion Recognition MER a linear regression term is added to learn an optimal classifier and dictionary pair. These results indicate that while sparse coding performs well for MGR, the additional supervision fails to improve the performance. In the case of MER, supervised coding significantly outperforms both standard sparse coding and commonly used designed features, namely MFCC and pitch chroma.



Georgia Tech Theses and Dissertations - School of Music Theses and Dissertations -



Autor: O-Brien, Cian John - -

Fuente: https://smartech.gatech.edu/







Documentos relacionados