Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during GaitReportar como inadecuado




Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during Gait - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase R2 = 0.56 and during the late stance phase R2 = 0.51, a high correlation was observed at the early stance phase R2 = 0.76. Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase R2 = 0.75. These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of the force magnitude.



Autor: Ines Kutzner , Adam Trepczynski, Markus O. Heller, Georg Bergmann

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados