Global Optimization for Solving Linear Non-Quadratic Optimal Control ProblemsReportar como inadecuado




Global Optimization for Solving Linear Non-Quadratic Optimal Control Problems - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differential boundary value problem. For computing an optimal control, an algorithm for numerical practice is given with the description of an example.

KEYWORDS

Linear Non-Quadratic Optimal Control, Pontryagin Principle, Global Optimization, Hamiltonian Differential Boundary Value Problem

Cite this paper

Zhu, J. 2016 Global Optimization for Solving Linear Non-Quadratic Optimal Control Problems. Journal of Applied Mathematics and Physics, 4, 1859-1869. doi: 10.4236-jamp.2016.410188.





Autor: Jinghao Zhu

Fuente: http://www.scirp.org/



DESCARGAR PDF




Documentos relacionados