The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and AggregationReportar como inadecuado




The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis ALS, Alzheimer’s disease AD, Parkinson’s disease PD, Lewy Body Dementia LBD, and Progressive Supranuclear Palsy PSP. Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNAAla with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine BMAA, can be misincorporated in place of l-serine into human proteins. We also report that this misincorporation can be inhibited by l-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS.



Autor: Rachael Anne Dunlop, Paul Alan Cox, Sandra Anne Banack, Kenneth John Rodgers

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados