Formation and growth mechanisms of single-walled metal oxide nanotubesReportar como inadecuado

Formation and growth mechanisms of single-walled metal oxide nanotubes

Formation and growth mechanisms of single-walled metal oxide nanotubes - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Single-walled metal oxide nanotubes have emerged as an important class of -building block- materials for molecular recognition-based applications in catalysis, separations, sensing, and molecular encapsulation due to their vast range of potentially accessible compositions and structures, and their unique properties such as well-defined wall structure and porosity, tunable dimensions, and chemically modifiable interior and exterior surfaces. However, their widespread application will depend on the development of synthesis processes that can yield structurally and compositionally well-controlled nanotubes. Moreover, such processes should be amenable to scale-up and preferably operate via benign chemistries under mild conditions. There is currently very little knowledge on the molecular-level -design rules- underlying the engineering of such materials. The capability to engineer single-walled tubular materials would lead to a range of structures, with novel properties relevant to diverse applications. In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. The class of aluminosilicate AlSiOH-germanate AlGeOH nanotubes are of particular interest to us, and serve as the exemplar materials for single-walled metal oxide nanotubes. They can be synthesized in pure form from inexpensive and easily accessible reactants at low temperatures 95 ˚C from aqueous solutions. The synthesis of nanotubes occurs on a time-scale of hours to days, making them an ideal model system to study the nanotube formation mechanism. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale 1-3 nm intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization ESI mass spectrometry, and nuclear magnetic resonance NMR spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 ˚C, disappear from the solution upon heating to 95 ˚C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Ångstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured at the molecular level. Anionic ligands both organic and inorganic are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ~20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. Ultimately, it is desired to produce the single-walled aluminosilicate nanotubes on a larger scale e.g., kilogram or ton scales for technological application. However, a quantitative multiscale understanding of nanotube growth via a detailed growth model, is critical to be able to predict and control key properties such as the length distribution and concentration of the nanotubes. Such a model can then be used to design liquid-phase reactors for scale-up of nanotube synthesis. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso-microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: 1 growth by precursor addition, and 2 by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. It has usually been assumed in the literature that the nanotube wall is free of defects. A combination of 1H-29Si and 1H-27Al FSLG-HETCOR, 1H CRAMPS, and 1H-29Si CP-MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. The 1H CRAMPS spectra of dehydrated aluminosilicate nanotubes revealed the proton environments in great detail. Integration of all the NMR results allows the structural assignment of all the chemical shifts and the identification of various types of defect structures in the aluminosilicate nanotube wall. In particular, five main types of defect structures are identified arising from specific atomic vacancies in the nanotube structure. It is estimated that ~16% of Si atoms in the nanotube inner wall are involved in a defect structure. The characterization of the detailed structure of the nanotube wall is expected to have significant implications for its chemical properties and applications.Chapter 7 contains concluding remarks, as well as suggestions for future directions in the engineering of single-walled nanotube materials.

Georgia Tech Theses and Dissertations - School of Polymer, Textile and Fiber Engineering Theses and Dissertations -

Autor: Yucelen, Gulfem Ipek - -



Documentos relacionados