A Generalized Forward-Backward SplittingReportar como inadecuado

A Generalized Forward-Backward Splitting - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 CEREMADE - CEntre de REcherches en MAthématiques de la DEcision 2 Equipe Image - Laboratoire GREYC - UMR6072 GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen

Abstract : This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \sum {i=1}^{n} A i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit forward step and of the parallel computation of the resolvents of the $A i$-s in a subsequent implicit backward step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the explicit and implicit steps. In particular, this allows efficient minimization of the sum of convex functions $f + \sum {i=1}^n g i$, where $f$ has a Lipschitz-continuous gradient and each $g i$ is simple in the sense that its proximity operator is easy to compute. The resulting method makes use of the regularity of $f$ in the forward step, and the proximity operators of the $g i$-s are applied in parallel in the backward step. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, we generalize it to the case of arbitrary $n$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.

Keywords : Forward-backward algorithm splitting proximal convex optimization image processing total variation wavelets

Autor: Hugo Raguet - Jalal M. Fadili - Gabriel Peyré -

Fuente: https://hal.archives-ouvertes.fr/


Documentos relacionados