Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126Reportar como inadecuado




Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126 - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein PrPC into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP23–230, we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP107–143, mPrP107–126, and mPrP127–143. Our results showed that the amyloid fibrils formed from mPrP107–143 and mPrP127–143, but not those formed from mPrP107–126, were able to seed the amyloidogenesis of mPrP23–230, showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP23–230.



Autor: Biswanath Chatterjee, Chung-Yu Lee, Chen Lin, Eric H.-L. Chen, Chao-Li Huang, Chien-Chih Yang, Rita P.-Y. Chen

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados