Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II AT1A ReceptorReportar como inadecuado




Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II AT1A Receptor - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor AT1A, at juxtamembrane regions of the N-terminus of the third intracellular loop i3, amino acids 214–231 and carboxyl tail of the receptor ct, 302–317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan W219 for alanine in i3, and phenylalanine F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.



Autor: Renwen Zhang, Zhijie Liu, Youxing Qu, Ying Xu, Qing Yang

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados