Assessment of Cyclic Resistance Ratio CRR in Silty Sands Using Artificial Neural NetworksReportar como inadecuado




Assessment of Cyclic Resistance Ratio CRR in Silty Sands Using Artificial Neural Networks - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio CRR of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.

KEYWORDS

Liquefaction, Cyclic Tests, Neural Networks, CRR, Silty Sands

Cite this paper

Sharafi, H. and Jalili, S. 2014 Assessment of Cyclic Resistance Ratio CRR in Silty Sands Using Artificial Neural Networks. Open Journal of Civil Engineering, 4, 217-228. doi: 10.4236-ojce.2014.43019.





Autor: Hassan Sharafi, Sahar Jalili

Fuente: http://www.scirp.org/



DESCARGAR PDF




Documentos relacionados