Vascular smooth muscle: a target for treatment of aging-induced aortic stiffnessReportar como inadecuado

Vascular smooth muscle: a target for treatment of aging-induced aortic stiffness

Vascular smooth muscle: a target for treatment of aging-induced aortic stiffness - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.


Cardiovascular disease is the leading cause of human death worldwide. Currently, the prevalence of cardiovascular disease and health care costs associated with its onset continue to increase in both developed and developing societies. Concordant with the need to improve preventative measures is the imperative to develop more effective and efficient remedies for incident cardiovascular pathologies. Increased aortic stiffness with aging has recently emerged as an early, independent, and consistent physiological predictor of cardiovascular disease and represents an attractive target for possible therapeutic options. The success of any biomedical strategy in this regard is incumbent upon comprehension of biological processes and mechanical properties attributable to constituent components within the aortic wall.This dissertation tested the hypothesis that aging-induced changes to smooth muscle maintenance of biomechanical homeostasis within the aorta lead to undesirable increases in stiffness, correlative with increased risk of negative cardiovascular outcomes. Conventionally, mechanical studies and models have identified extracellular matrix as the primary determinant of changes in stiffness, but new research presented here shows that this may not be true. In viable ex vivo preparations of aortic tissue, roughly half of the maximal elastic modulus results from alpha-agonist activation of smooth muscle cells. Investigation of the biochemical interactions that characterize this effect revealed a link between aging and decreased expression of Src, a kinase involved in numerous signaling pathways governing cellular growth and survival, as well as defective regulation of focal adhesions between the smooth muscle cells and extracellular matrix.These findings were integrated into a model of aortic contractility and stiffness that establishes an aging-impaired regulatory complex comprising focal adhesions and non-muscle actin cytoskeleton in vascular smooth muscle cells. A better understanding of the mechanisms underlying this model may motivate the design of potential therapeutics, deliverable to previously overlooked target sites within aortic smooth muscle, and ultimately novel treatments for aging-induced cardiovascular disease.

Boston University Theses and Dissertations -

Autor: Gao, Yuan Zhao - -


Documentos relacionados