Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum InfectionReportar como inadecuado

Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.


The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans Phaseolus vulgaris L

Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus.

Methodology and Principal Findings

As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag EST to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology GO analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling.


We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.

Autor: Paula Rodrigues Oblessuc , Aline Borges , Bablu Chowdhury, Danielle Gregório Gomes Caldas, Siu Mui Tsai, Luis Eduardo Aranha Cam

Fuente: http://plos.srce.hr/


Documentos relacionados