Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In VitroReportar como inadecuado




Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive Methicillin-resistant Staphylococcus aureus MRSA, Methicillin-sensitive Staphylococcus aureus and Gram-negative bacteria E. coli using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs breed: Pietrain. After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue.



Autor: Tim Maisch , Tetsuji Shimizu, Yang-Fang Li, Julia Heinlin, Sigrid Karrer, Gregor Morfill, Julia L. Zimmermann

Fuente: http://plos.srce.hr/



DESCARGAR PDF




Documentos relacionados