en fr Non-linear models and forecasting Modèles non linéaires et prévision Reportar como inadecuado




en fr Non-linear models and forecasting Modèles non linéaires et prévision - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 LEO - Laboratoire d-économie d-Orleans 2 Laboratoire d-économie Orléans

Abstract : The interest of non-linear models is, on the one hand, to better take into account non-linearities characterizing themacroeconomic and financial series and, on the other hand, to get richer information in forecast. At this level,originality intervals asymmetric and - or discontinuous and forecasts densities asymmetric and - or multimodaloffered by this new modelling form suggests that improving forecasts according to linear models is possible and thatwe should have enough powerful tests of evaluation to check this possible improvement. Such tests usually meanchecking distributional assumptions on violations and probability integral transform processes respectively associatedto each of these forms of forecast. In this thesis, we have adapted the GMM framework based on orthonormalpolynomials designed by Bontemps and Meddahi 2005, 2012 to test for some probability distributions, an approachalready adopted by Candelon et al. 2011 in the context of backtesting Value-at-Risk. In addition to the simplicity androbustness of the method, the tests we have developed have good properties in terms of size and power. The use of ournew approach in comparison of linear and non-linear models in an empirical analysis confirmed the idea according towhich the former are preferred if the goal is the calculation of simple point forecasts while the latter are moreappropriated to report the uncertainty around them.

Résumé : L’intérêt des modèles non-linéaires réside, d’une part, dans une meilleure prise en compte des non-linéaritéscaractérisant les séries macroéconomiques et financières et, d’autre part, dans une prévision plus riche en information.A ce niveau, l’originalité des intervalles asymétriques et-ou discontinus et des densités de prévision asymétriqueset-ou multimodales offerts par cette nouvelle forme de modélisation suggère qu’une amélioration de la prévisionrelativement aux modèles linéaires est alors possible et qu’il faut disposer de tests d’évaluation assez puissants pourvérifier cette éventuelle amélioration. Ces tests reviennent généralement à vérifier des hypothèses distributionnellessur les processus des violations et des transformées probabilistes associés respectivement à chacune de ces formes deprévision. Dans cette thèse, nous avons adapté le cadre GMM fondé sur les polynômes orthonormaux conçu parBontemps et Meddahi 2005, 2012 pour tester l’adéquation à certaines lois de probabilité, une approche déjà initiéepar Candelon et al. 2011 dans le cadre de l’évaluation de la Value-at-Risk. Outre la simplicité et la robustesse de laméthode, les tests développés présentent de bonnes propriétés en termes de tailles et de puissances. L’utilisation denotre nouvelle approche dans la comparaison de modèles linéaires et de modèles non-linéaires lors d’une analyseempirique a confirmé l’idée selon laquelle les premiers sont préférés si l’objectif est le calcul de simples prévisionsponctuelles tandis que les derniers sont les plus appropriés pour rendre compte de l-incertitude autour de celles-ci.

en fr

Keywords : Orthonormal polynomials Interval forecasts Density forecasts Backtesting Regime switching models

Mots-clés : Polynômes orthonormaux. GMM Modèles à changement de régimes Intervalles de prévision Densités de prévision Tests d’évaluation





Autor: Jaouad Madkour -

Fuente: https://hal.archives-ouvertes.fr/



DESCARGAR PDF




Documentos relacionados