Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial LineagesReport as inadecuate

Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages - Download this document for free, or read online. Document in PDF available to download.

Bacterial production of long-chain omega-3 polyunsaturated fatty acids PUFAs, such as eicosapentaenoic acid EPA, 20:5n-3 and docosahexaenoic acid DHA, 22:6n-3, is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as -Pfa synthases-. In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS-PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of -secondary lipids- to describe these biosynthetic pathways and products, a proposition consistent with the -secondary metabolite- vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

Author: Christine N. Shulse, Eric E. Allen

Source: http://plos.srce.hr/


Related documents